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Abstract. The results of a previous paper by the authors, which express the density of 
states for the Thorpe-Weaire model in terms of the number of returns to the origin, are 
generalized to the case of arbitrary coordination numbers, and the condition for the existence 
of a band gap obtained by studying the convergence of the series for the resolvent. The 
asymptotic form of the series is used to  obtain the form of the density of states near the band 
edges for a topologically disordered lattice. It is found to be exactly the same as that for the 
periodic case. 

1. Introduction 

Weaire and Thorpe (1971) have introduced a hamiltonian which can form a starting 
point for the study of disordered materials of the amorphous type. In a previous paper 
(Lukes and Nix 1973, to be referred to as I) we have obtained an expression for the 
density of states for this model in terms of the number of returns to the origin. Explicit 
results for the density of states were, however, only obtained for the case of a periodic 
lattice. In the present paper we pursue our method further for the case of a disordered 
material. To do so we argue that the assumptions made in the model limit rather 
specifically the type of disorder which can obtain. We are thus able to use existing results 
on the number of returns to the origin to calculate the form of the density of states near 
the band edges. The condition for the existence of energy gaps for general coordination 
number W is also found. Our results for the density of states suggest that the model 
does not depart sufficiently from the electronic structure of the periodic lattice and 
requires further modification if the properties of the amorphous material are to be 
adequately represented. 

2. The expression for the density of states for general coordination number 

As a starting point we outline the method used in I, where we consider the two-band 
hamiltonian of Weaire and Thorpe (1971): 

where lij) refers to the valence orbital associated with site i whose bond index is j ,  the 
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symbol being defined as 

I = 0 otherwise. 
= 1 if i‘ is the nearest neighbour of atom i associated with bond j 

6 i . S : .  

With this separation of H into H1 and H 2  we then defined a zero-order resolvent Go as 

Go = ( E z - H 1 ) - I  (2.2) 

whose matrix elements were given by 

where 

(2.3) 

The averaged density of states per particle was defined in the usual way in terms of 
G +  = (E-H+ir)-’ as 

n(E) = - ( n N ) - l  I m C  (ijlG+\ij) 
i , j  

Dyson’s equation was then used to find 
00 

(ijIG+liJ) = 1 (ij\T,lij) 
n = O  

where T, = GoH2Co. . . H2G, contains N factors of H 2 .  It was precisely these N factors 
of H 2  which made (ijlTnlij) dependent upon the number of returning walks of length t 
to atom i ,  denoted by N( t ,  i, i). We then proceeded via a rather lengthy piece of algebra 
to obtain the following two recurrence relationships for the matrix elements bf T, : 

Using the above relationships we were able, by collecting coefficients of N( t ,  i, i )  to obtain 
the following : 

f ( M)fN(t, i, i ) ]  (2.7) 
2BN(O, i ,  i )  V2B2N( 1, i ,  i )  2(2A + B )  + + 

1-z r = O  1-z 

where z = V$B(4A+B) .  Finally we were able, by the use of (2.4), to write down the 
density of states as 

‘f (-)‘N(t, i, i ) ] .  (2.8) 
2BN(O, i, i )  VzB2N(1, i, i) 2(2A + B )  + + 
l-V$BZ l-VzBz 1-z t = o  1-z 

We now generalize the above results to the case of general coordination number W. 
The matrix representing Go is still of block diagonal form, but instead of 4 x 4 matrix 

entries we have W x Wmatrix entries, which lead to the following definitions for A and B 
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which occur in (2.3), ie 

In the working that followed only the following alterations need be made : 

( 4 A + B ) - ( W A + B )  

2A(2A + B)  H A( W A  + 2 P )  

for example, equations (2 .5) ,  (2.6) and (2.7) become 

(2.9) 

(2.10) 

i )  W A + 2 B  ( V 2 A ) r  ] - N( t ,  i, i )  , (2.11) 
1-z l = o  1-z + 

where z = V:B( W A  + B). Thus finally we have the following expression for the average 
density of states of a W-fold coordinated structure : 

2BN(O, i , i )  V2B2N(1, i , i )  W A + 2 B  
l - V i B 2  + 1-V;BZ + 1-z .f ( - 1-z V 2 A ) ’  N ( t ,  i ,  i) ] (2.12) 

where z = V:B( W A  + B). 

3. The condition for the existence of an energy gap 

The quantity h(t, i ,  i )  is the number of returns to the origin i after t steps and, in I, this 
was only evaluated for a periodic lattice. To calculate it for present problem we note that 
the hamiltonian of Weaire and Thorpe (1971) assumes constant overlap integrals VI and 
V2. 

Figure 1 illustrates the structure of a typical fourfold coordinated lattice. Since the 
overlap integrals are assumed constant this implies constant bond lengths and the bond 
angle between r1 and r2 is also constant. Thus the most general form of disorder is 
obtained by rotating the lower tetrahedron about the r l  axis along the dashed contour. 
We make the assumption that all angles in such a rotation are equally likely, which is 
the maximum disorder allowed by the model. This presumably overestimates the 
disorder since there are in a real amorphous lattice, connectivity requirements on 
neighbouring atoms which are probably more stringent. On the other hand, even with 
this maximum degree of disorder, we shall later see that with the assumption of constant 
overlap integrals the results for the density of states near the band edges agree with those 
of the periodic lattice. 
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Figure 1. The structure of a typical fourfold coordinated topologically disordered lattice. 
The bond angle between rl and r2 is assumed to be constant and the tetrahedra can be rotated 
anywhere along the dashed contour. 

To calculate N( t ,  0,O) we use the fact that N( t ,  O,O)/W' is the probability of the walk 
returning to the origin. For a random walk on a lattice this is asymptotically proportional 
to t -3/2.  For the more general case considered here Tchen (1952) has shown that for 
large t the probability of returning to the origin is still proportional to t -3 '2 .  

Finally, we may say that the asymptotic (ie large t) convergence properties of the 
resolvent in the presence of topological disorder are determined by the convergence 
properties of the following series : 

where for large t 

ie 

Thus 

We now use the fact that convergence of the resolvent series in a given region of energy 
implies that this operator is bounded and hence that there are no eigenvalues in that 
region. Such an approach to the existence of energy gaps has also been used by Schwartz 
and Ehrenreich (1972). 

By applying the ratio test we then obtain the following inequality for the energy 
bands, namely : 
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This leads to the condition 

0 > [(E+ Vl)’-(E + VI) WV1 - V i  - WlV1 V2l] [(E + VI)’ -(E + V1)WVi - V i  + WlV1 V2I]. 

The roots of the first factor are 

E = V2+(W-l)Vl  or - v, - v2 

E = -V2+(W- l )Vl  or - v, + V2 

and similarly for the second factor 

By investigating the sign of the above two quadratics in the regions defined by the four 
roots given, the only ranges of E to satisfy the above inequalities are 

( W -  l)V, +V2 < E < - V, + V2 

(W- l )Vl -V2  < E  < -V1-V2 

(which give the limits of the two bands), that is: 

since V, and V2 < 0 in this model. 
If W = 4 the ranges become 

E I Vl I 31v11 1 < - < -1+- 
lV2l IV2l I V2l 

~ I V , I  E IVll l - -<-<l+-  
IV2l IV2l I V2l 

which agrees with a result obtained by Schwartz and Ehrenreich (1972) by a different 
method. 

It is interesting to note in passing, that the regions are distinct (ie an energy gap exists) 
only if 

(W--1)V1-V2 > -V,+V,,  

that is, 

4. The form of the density of states near the band edges 

In this section we investigate the form of n(E) near the band edges where WV2A/( 1 - z )  - 1. 
To do this we look at the behaviour of the following series : 

* c‘ 
a s c  - 1-. c3is r=o t 
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Now ct = etlnc but 1 - c  - 0'. Hence lnc  = ln[l -(l-c)] - -(1 -c). The series 
therefore behaves like 

m e - ( l - c ) t  

t = O  1 7  
which in turn behaves like 

With this result we can now analytically continue this series locally into the region 
C N  l+ .  

The above procedure has been rigorously justified by Domb et a1 (1959). They 
proved that it was the large order moments of n(E) (which in site representation means 
large number of walks), that determine the behaviour of n(E) near the upper band edge. 

Applying these results to the series for n(E) we obtain that 

where a is the constant of proportionality between N ( t ,  0, O)/Wr and t -3 '2  implied in 
Tchen's work. It is shown in appendix 1 that this constant is identical with that for the 
periodic lattice. 

The above is true for energies in the immediate locality of the points defined by 

-- - 1  
WV2A 
1-z 

ie when E *= - Vl - V2 or V2 + V,( W- 1) which correspond to the uppermost and 
lowermost limits of the energy bands. The case c = - 1 would similarly give the be- 
haviour near the remaining two interior band edges, but the properties of the series near 
there are more complicated. Hence 

1 WA+2B 
7c 1-z  

n(E) = --lm 

in the regions defined above. Now 

z =  v: 
[2E-(W- l)V1](E+ V,) 

and 

2E + ZV, - WV, WA+2B = 
[ E  -(W - l)VJ(E + V,) . 

Therefore 

- WV, V,}"' 

when E - - Vl- V, or E - V, +(W- 1)y 
(4.1) 
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4.1. E - Vl- V2 

In this case 

a 
n(E) - - - r( - +) IIn lim n C-0 

(- WV1- ~ V Z  + ic)( - WVl -2V2 + ir)li’(E + V,  + V, + ic)’/’ 
[( - Vz + ir) ( - V, - W Vl + ic) - v:] 3/2 

but E+ Vl + V, < 0 when E is in the band. Hence 

4.2. E ‘V V2+(W-I)Vl 

HereE+Vl+Vz - 2V2+WV1 < Oand 

The form of the density of states near the band edges is thus identical with that for the 
periodic lattice. This result has also been obtained by Ziman (1971). Since experimental 
results which reflect the density of states, such as optical absorption, strongly suggest 
that the density of states of the amorphous material differs more radically from that in 
the periodic case, it appears then, that the model here adopted would need to be modified 
to represent adequately the properties of the disordered system. The removal of the 
assumption that the overlap integrals are constants would form perhaps the most 
obvious first step. 
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Appendix 1. To identify the constant of proportionality for N(t, 0,O) 

If we let R denote the end-to-end position vector of N walks ri(i = 1, .  . . , N ) ,  ie 
N 

R = rir 
i =  1 

( A l . l )  

then Tchen (1952) and Chandrasekhar (1943) respectively, have shown for the case of a 
freely-rotating chain, and for any lattice, that R is normally distributed with normaliza- 
tion constant 

(%lr(R’))- 3 i2  (A1.2) 
where the angular bracket denotes an average over all possible configurations of the 
chain obtained by rotations about each bond axis. With this result, we now have to 
show that the values both of ( R )  and ( R 2 )  must be the same in each case, for the 
probability ofreturning to the origin to be the same. Chandrasekhar finds quite generally 
that for any lattice ( R )  = 0 and (R’)  = n12, where 1 is the nearest neighbour distance. 
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For a freely-rotating chain we proceed as follows : figure 2 shows all possible positions 
P, , Pz , P3, and P4 of some ri in a given configuration, and it can be seen, either by sym- 
metry, since P1, P2, P3, P4 are the vertices of a regular tetrahedron, or by direct calcula- 
tion, that the average of ri for each configuration is 0. Therefore we have 

N 
(R) = 1 (ri) = 0 

i =  1 

and 
N 

( ~ 2 )  = (( ri) . ( 5 rj)) = 1 ( r ' ) + 2  i < j  1 (vi. r j>  
i =  1 j =  1 i =  1 

where, since each bond length is constant, 
N 

( r ' )  = n12. 
i =  1 

(A1.3) 

4-4 

F i g u s .  For each walk in the chain there are four possible directions, OP,, OP,. OP, 
and OP,. Each configuration corresponds to different positions on the dashed contour. 

To calculate the second term of(A1.3) we use the method adopted by Flory (1969) who 
used the following argument. To find (vi. r j )  for any particular i and j is equivalent to 
finding the averaged projection of rj onto rj- (since the averaged projection perpendicu- 
lar to this vector is zero by symmetry), then of this projection onto r j - 2 ,  and so on down 
9. However, in our problem (rj- . r j )  is an average along one of the directions 
PiO shown in figure 2, and hence by symmetry is zero. Thus (ri . rj) = 0 for all i # j ,  and 
(A 1.3) becomes 

( R 2 )  = n12 

which is the same as that for the lattice. Therefore the probability of a returning walk is 
given in both cases by ( f 7 ~ 1 ~ n ) - ~ ~ ~ .  
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